Download e-book for kindle: Finite groups by and Huppert

Download e-book for kindle: Finite groups by and Huppert

By and Huppert

Huppert B., Blackburn N. Finite teams II (Springer, 1982)(ISBN 0387106324)

Show description

Read or Download Finite groups PDF

Similar symmetry and group books

Download e-book for iPad: Symmetry and heterogeneity in high temperature by Antonio Bianconi

The item of this e-book is the quantum mechanism that enables the macroscopic quantum coherence of a superconducting condensate to withstand to the assaults of extreme temperature. technique to this basic challenge of contemporary physics is required for the layout of room temperature superconductors, for controlling the decoherence results within the quantum desktops and for the knowledge of a potential position of quantum coherence in residing subject that's debated this present day in quantum biophysics.

Extra info for Finite groups

Example text

Nous dirons dor´enavant groupe alg´ebrique affine au lieu de “groupe alg´ebrique isomorphe a` un groupe lin´eaire”. Rappelons qu’un tel groupe est connexe (pour la topologie de Zariski) si et seulement si c’est un ensemble alg´ebrique irr´eductible. 2 Sous-groupes ferm´ es d’un groupe alg´ ebrique affine Th´ eor` eme 1. – (Chevalley)2 Soient G un groupe alg´ebrique affine, H un sous-groupe ferm´e. Alors il existe un nombre fini d’´el´ements Fi de A(G) tels que H soit l’ensemble des s ∈ G admettant les Fi comme semi-invariants dans la repr´esentation lin´eaire r´eguli`ere droite de G dans A(G).

Soient E1 et E2 deux ensembles alg´ebriques, k ′ un souscorps de K contenant k. Soient4 respectivement a et b les id´eaux des ´el´ements 4 On note ⊗ le produit tensoriel sur le corps k. 24 2. Sch´emas des vari´et´es alg´ebriques nilpotents de k(E1 )⊗ k(E2 ) et k(E1 )⊗ k ′ . L’alg`ebre des fonctions rationnelles ′ sur E1 × E2 (resp. E1k ) est canoniquement isomorphe a ` l’anneau total des fractions de (k(E1 ) ⊗ k(E2 ))/a (resp. (k(E1 ) ⊗ k ′ )/b). On se ram`ene imm´ediatement au cas o` u E1 et E2 sont affines (cf.

Alors il existe un nombre fini d’´el´ements Fi de A(G) tels que H soit l’ensemble des s ∈ G admettant les Fi comme semi-invariants dans la repr´esentation lin´eaire r´eguli`ere droite de G dans A(G). On peut supposer que les Fi sont des semi-invariants de mˆeme poids sous H. Si G est connexe, il existe un nombre fini de fonctions rationnelles Gi sur G telles que H soit l’ensemble des s ∈ G tels que Rs Gi = Gi pour tout i. Rappelons qu’on dit qu’un ´el´ement F d’un espace vectoriel o` u op`ere un groupe est semi-invariant sous un s ∈ G si sF est de la forme λ(s)F , o` u λ(s) ∈ K est ´evidemment bien d´etermin´e si F = 0 ; l’ensemble des s ∈ G admettant F comme semi-invariant est ´evidemment un sous-groupe, et λ(s) est un caract`ere multiplicatif sur ce sous-groupe, appel´e poids du semiinvariant F .

Download PDF sample

Rated 4.29 of 5 – based on 17 votes
Comments are closed.